# Model Mathematics

### Component: differentials

$ddtimeA=-A1+A2+A3+A4+A5+A6ddtimeG=D1-A1+T1+R1ddtimeGA=A1-T2+D2-R4ddtimeT=-T1+T3+T2+T4ddtimeR=-R1+R2+R3+R4+R5+R6ddtimeGT=T1-P1-R2-A2ddtimeGD=P1-D1-A3-R3ddtimePi_=P1+P3+P2+P4ddtimeD=D1+D3+D2+D4ddtimeRG=R1-T3+D3-A4ddtimeRGT=T3+R2-P3-A5ddtimeGAT=A2+T2-P2-R5ddtimeGAD=A3+P2-D2-R6ddtimeRGD=R3+P3-D3-A6ddtimeRGA=A4+R4-T4+D4ddtimeRGAT=T4+R5+A5-P4ddtimeRGAD=P4+A6+R6-D4$

### Component: output

$Z=GT+RGT+RGAT+GATG_totv=P_minus4⁢RGAT+P_minus2⁢GAT+P_minus3⁢RGT+P_minus1⁢GTG_tot$

### Component: A1

$A1=k1⁢G⁢A-k2⁢GA$

### Component: T1

$T1=k1⁢G⁢T-k2⁢GT$

### Component: R1

$R1=k1⁢G⁢R-k2⁢RG$

### Component: P1

$P1=k1⁢GT-k2⁢GD⁢Pi_$

### Component: D1

$D1=k1⁢GD-k2⁢G⁢D$

### Component: T3

$T3=k1⁢RG⁢T-k2⁢RGT$

### Component: R2

$R2=k1⁢GT⁢R-k2⁢RGT$

### Component: A2

$A2=k1⁢GT⁢A-k2⁢GAT$

### Component: A3

$A3=k1⁢GD⁢A-k2⁢GAD$

### Component: R3

$R3=k1⁢GD⁢R-k2⁢RGD$

### Component: P3

$P3=k1⁢RGT-k2⁢RGD⁢Pi_$

### Component: D3

$D3=k1⁢RGD-k2⁢RG⁢D$

### Component: T2

$T2=k1⁢GA⁢T-k2⁢GAT$

### Component: P2

$P2=k1⁢GAT-k2⁢GAD⁢Pi_$

### Component: D2

$D2=k1⁢GAD-k2⁢GA⁢D$

### Component: A4

$A4=k1⁢RG⁢A-k2⁢RGA$

### Component: R4

$R4=k1⁢GA⁢R-k2⁢RGA$

### Component: T4

$T4=k1⁢RGA⁢T-k2⁢RGAT$

### Component: R5

$R5=k1⁢GAT⁢R-k2⁢RGAT$

### Component: A5

$A5=k1⁢RGT⁢A-k2⁢RGAT$

### Component: P4

$P4=k1⁢RGAT-k2⁢RGAD⁢Pi_$

### Component: A6

$A6=k1⁢RGD⁢A-k2⁢RGAD$

### Component: R6

$R6=k1⁢GAD⁢R-k2⁢RGAD$

### Component: D4

$D4=k1⁢RGAD-k2⁢RGA⁢D$
Source
Derived from workspace Bornheimer et al. 2004 at changeset 0958dc339ee1.
Collaboration
To begin collaborating on this work, please use your git client and issue this command: